Torque control with set-up and auxiliary spring in an adult severe class II case treated by lingual straight-wire appliance, premolar extractions and orthognathic surgery spring in an adult severe class II case treated by lingual straight-wire appliance, premolar extractions and orthognathic surgery spring in an adult severe class II case treated by lingual straight-wire appliance, premolar extractions and orthognathic surgery
 Check for updates

Enrico Albertini, Paolo Albertini, Anna Colonna, Ugo Baciliero, Luca Lombardo

Available online:
Postgraduate school of Orthodontics, University of Ferrara, Ferrara, Italy
Correspondence:
Enrico Albertini, Orthodontic Office, via Livatino 9, Reggio Emilia 42124, Italy. info@dralbertini.com

Keywords

Class II
Mandible pathology
Retrognathia
High-angle
Orthognathic surgery
Lingual
Torque

Summary

This case report describes a complex full-step class II high angle case in an adult patient treated with lingual straight-wire appliance, premolar extractions and orthognathic surgery. With the twofold aim of obtaining ideal occlusal relationship and aesthetic improvement, surgical treatment with appropriate biomechanical strategies, including extraction choice and torque control during space closure, are needed to achieve the planned results. This case report demonstrates the possibility of solving successfully severe sagittal, transverse and vertical discrepancies in an adult patient with surgical treatment by means of an invisible technique. This report also underlines the need for precise biomechanical control, including set-up overcorrections and an auxiliary spring to manage teeth inclination, in lingual orthodontics extraction cases.

Introduction

Torque control is one of the most difficult aspects of orthodontic extraction treatment, in particular when lingual appliances are employed.
A research of Komaki et al. comparing maxillary incisors' inclinations between lingual and labial appliances by finite element method concluded that loads of the same magnitude produced translation of the maxillary incisors in labial orthodontics but lingual crown tipping of the same tooth in lingual orthodontics
[1]. To provide better torque control of the incisor or prevent a vertical bowing effect for the lingual appliance, the incorporation of extra torque into brackets of incisors and the use of power arm were recommended.
Deguchi et al. remarked that "exaggerated uprighting of the maxillary and mandibular incisors following treatment of class II extraction cases with lingual appliances indicates the need for increased lingual root torque to regain control of incisor movement during retraction" [2].

On the other side, a recent case series concluded that "control of anterior torque is a realistic goal of lingual orthodontic treatment, even in a complex extraction case, when overcorrections are included in the set-up prescription and space closure is managed with light forces, appropriate stainless steel archwires, and compensation bends and curves to limit bowing effects" [3]. Through the combined use of the ribbon-wise customized lingual appliance, palatal bar, and orthodontic anchor screw, vertical control and an excellent treatment result were achieved by Inami et al., without the vertical and horizontal bowing effects peculiar to conventional lingual treatment [4].
Some researchers compared the torque control achieved by different combinations of wires and brackets (conventional vs. selfligating) concluding that full-size wires and conventional brackets produced the best results [5,6].
In most cases, torque is properly controlled with the exception of few elements that show evident differences: this can happen since anterior retraction may produce a reactive tipping force due to differences in the biomechanical force directions [7]. In
rare cases, despite a symmetric mechanics, one single tooth can evidence a higher torque loss.
In order to solve this shortcoming, this article describes how the employment of an auxiliary spring, in addition to set-up overcorrections, is successful to normalize single tooth torque, since orthodontic appliances are less efficient in torque movements, due to limited moment [8].

Diagnosis and aetiology

A 20-year-old male presented with the request to have his teeth aligned by means of an aesthetic appliance. From a frontal perspective, the face was well proportioned, with a mild form of hypertelorism, a mandibular symphysis deviation toward the right side and divergent mandibular angle (figure 1). The patient exhibited a convex profile, a prominent nose, a 90° nasolabial angle, a marked labio-mental sulcus, and a severely retrusive lower jaw. In medical history, a significant snoring at night was reported.

Figure 1
Initial frontal and lateral extraoral photographs

The midlines were not coincident, with the lower deviated toward the right side, while a crossbite involving the upper right first and second molars was present (figures 2 and 3); negative torque of the buccal and posterior segments was evident in both arches, along with an anterior deep bite and an accentuated lower curve of Spee. The patient had bilateral full-step class II
canine and molar relationships, a constricted upper arch, and an asymmetrical lower arch. The upper lateral incisors and the lower right lateral incisor were lingually displaced.
The periodontal biotype was thick. The panoramic radiograph showed the presence of all teeth, including the third molars, with the lower left impacted (figure 4).

Figure 2
Initial intraoral photographs

Figure 3

Initial models

Cephalometric values pointed out a skeletal class II relationship ($\mathrm{ANB}=10^{\circ}$) with both the maxilla (SNA $=76^{\circ}$) and mandible (SNB $=66^{\circ}$) in retruded positions (figure 5). The skeletal pattern was hyperdivergent ($\mathrm{SN} / \mathrm{MP}=46^{\circ}$) with a counterclockwise-

Figure 4
Initial orthopantomography
oriented occlusal plane. The upper incisors were normally inclined ($\mathrm{U} 1 / \mathrm{PP}=109^{\circ}$) while the lower incisors were proclined (L1/MP = 101 ${ }^{\circ}$.

Figure 5
Cephalometric analysis, tracing and values

Treatment objectives

The primary objectives were profile improvement by orthognathic surgery, dental class II correction, crossbite resolution and vertical control. Additional goals were crowding correction, reduction of black buccal corridors during smile, ideal overjet and overbite achievement and aesthetic dental exposition improvement at smile.

Treatment alternatives

Considering the patient's convex profile, the prominent nose and the bimaxillary retrusion, an orthodontic camouflage treatment with four premolar extractions would have adversely affected his facial balance.
Surgical orthodontic treatment including maxillo-mandibular advancement, posterior maxillary impaction, correction of asymmetry, transverse maxillary expansion and genioplasty was recommended as the only possible solution. The upper and lower second premolars would be extracted to prepare the patient for the surgical correction.
The maxillo-facial surgeon asked the lower third molars extraction. Surgical orthodontic treatment including maxillo-mandibular advancement, posterior maxillary impaction, correction of asymmetry, transverse maxillary expansion and genioplasty was recommended as the only possible solution. The upper and lower second premolars would be extracted to prepare the patient for the surgical correction.
Lower second premolars extractions were necessary in order to obtain a correct lower incisors inclination. Avoiding extractions in upper arch could have determined a molar class III relationship with an excessive number of upper teeth in comparison with the lower arch.
In lower arch, the possibility of decompensation by mandibular en-masse retraction, thus avoiding extractions, with either miniscrews or miniplates insertion and third molar extractions was considered [9,10]. However, the initial lower incisors proclination (requiring a significant correction, in order to allow the correct mandibular advancement) and the necessary increase in the duration of treatment lead to avoid this solution.

Treatment progress

Since the patient had asked for aesthetic treatment, a lingual appliance would be used. The lingual biomechanics would avoid lower incisor proclination during leveling, as a result of the intrusion force passing closer to the lower incisors' center of resistance [7].
Extraction tip and torque overcorrections were included in the manual set-up prescriptions for the preadjusted Ormco STb brackets (figure 6).
In consequence of the irregular incisal margins of upper right central incisor and the different height of lateral incisors, composite reconstructions on upper right central incisor and left lateral incisor were planned with the patient for treatment end.

Figure 6
Manual set-up

Indirect bonding was carried out with single jigs, according to the Komori KommonBase technique [11].
Lower arch was first performed with the insertion of a 0.013 Copper NiTi LSW small wire and an open-coil springs between the lower right lateral incisor and the lower right first premolar (figure 7a).
After a period of two months after the extraction of lower second premolars, the upper arch was bonded and the same size of Stb archwire was placed (figure 7b). Occlusal build-ups were added on the upper second molars to obtain a tripodic contact. A closed elastomeric chain was inserted between the upper left central and lateral incisor to facilitate their complete rotational correction. The open-coil springs between the lower right lateral incisor and first premolar was reactivated. Buccal tubes on lower first and second molars were bonded since lingual surface of lower second molars was too small for lingual brackets insertion. 0.019×0.025 NiTi buccal sectionals were then inserted for the application of bilateral criss-cross 3/16 $60 z$ Ormco Impala elastics.
The crossbite elastics were prescribed to the patient in order to help the correction of upper molars torque: the main entity of expansion correction was planned with surgical treatment.
Six months after the start of treatment, the upper wire was changed to a medium 0.018×0.018 Copper Niti for leveling

Figure 7
a: lower arch bonding. Insertion of 0.013 CuNiTi LSW Ormco Stb small. Insertion of open coil springs between the lower right lateral incisor and the lower right first premolar; b: upper arch bonding. Insertion of 0.013 CuNiTi LSW Ormco Stb small, build-ups on upper second molars and closed elastic chain between the upper left central and lateral incisors. Reactivation of open-coil springs between the lower right lateral incisor and first premolar. Bonding of buccal tubes on lower first and second molars. Insertion of $\mathbf{0 . 0 1 9 \times 0 . 0 2 5}$ Niti buccal sectionals

Figure 8
a: at the 6th month, insertion of a medium $0.018 \times \mathbf{0 . 0 1 8}$ Copper Niti in upper arch; insertion of a small 0.018×0.018 Copper NiTi for leveling and torque management was inserted in the lower arch; b: at the 9 th month, insertion of a $0.018 \times \mathbf{0 . 0 1 8}$ posted stainless steel upper archwire, with the addition of root-palatal torque from upper right to upper left lateral incisor; super-Spee and transverse antibowing compensation curves. Insertion of a 0.018×0.018 stainless steel lower archwire with the addition of antiSpee curve. Insertion of closed elastomeric chains from upper right to upper left second molar and from lower right to lower left first molar
and torque management; a small 0.018×0.018 Copper NiTi for leveling and torque management was inserted in the lower arch (figure 8a).
Following a period of three months, after the extractions of upper second premolars, a 0.018×0.018 posted stainless steel upper archwire was inserted with the addition of root-palatal torque from upper right to upper left lateral incisor; super-Spee and transverse antibowing compensation curves were added. A 0.018×0.018 stainless steel lower archwire was inserted with the addition of antiSpee curve. Closed elastomeric chains were inserted from upper right to upper left second molar and from lower right to lower left first molar in order to begin spaces closure (figure 8b).

From the extraoral photographs, the pre-surgery profile worsening can be evidenced (figure 9).
After 23 months of treatment (two weeks before surgery), buccal buttons, brackets and tubes were bonded to the remaining teeth as attachments for postsurgical intermaxillary elastics (figure 10). The presurgical panoramic radiograph confirmed that root parallelism had been achieved (figure 11).
Cephalometric values showed an increase in upper incisor torque from 109° to 118° despite the extraction space closure (figure 12).
The lower incisor torque change was ideal (from 101° to 94°) for the sagittal mandibular advancement.

Figure 9
Pre-surgery frontal and lateral extraoral photographs

Maxillo-mandibular advancement was planned to improve the profile (with the addition of a genioplasty), posterior maxillary expansion to correct the posterior crossbite, posterior maxillary impaction to improve the hyperdivergent pattern (figure 13). The correction of the maxillomandibular asymmetry was in addition planned.

The maxillofacial surgery was performed after 24 months of orthodontic treatment. Three weeks later, bilateral class II 3/16 $60 z$ Ormco Impala elastics were prescribed full-time in order to improve the intercuspation.
One month after the operation (at month 25), upper and lower $0.0175 \times 0.0175 \mathrm{TMA}$ archwires were inserted in order to

Figure 10
Pre-surgery endobuccal views; upper and lower buccal buttons bonding

Figure 11

Pre-surgery orthopantomography

Figure 12
Pre-surgery cephalometric analysis, tracing and values

Figure 13
Surgery sagittal, transverse and vertical movements planning
perform some finishing bends both in upper and lower arches. Some buccal buttons were removed while others were left on the upper and lower posterior teeth for use of nighttime bilateral class II elastics and sectional wires insertion (figure 14). An auxiliary 0.016 SS spring was modeled and inserted for increasing upper left central palatal root-torque in order to correct the height discrepancy of the central incisors marginal height (figure 15).
During the following six months, the auxiliary springs improved the upper left central incisor torque and the following finishing
bends were performed: 12 step-out, 13 rotation bend, 21 stepout, 22 step-in and step-down, 23 step-in and tip bend, 24 stepout, 32-41-42 rotation bends, 34-44 tip bends. Anterior vertical intermaxillary elastics were added for nighttime in order to obtain an ideal overbite.
After 32 months from treatment start, 0.016 SS auxiliary wire was removed and the last refinement bends were performed to finish the occlusion: 22-23 step-in, 23 step-down, 25 rotation bend, 43 step-up (figure 16).

Figure 14
One-month post-surgery (at month 25) endobuccal views; upper and lower $0.0175 \times \mathbf{0 . 0 1 7 5}$ TMA archwires insertion. $0.016 \mathbf{S S}$ auxiliary torque spring insertion. Closed elastic chain insertion between upper first molars. Bilateral class II elastics prescribed for nighttime

Figure 15
0.016 SS auxiliary torque spring activation

Figure 16
After removal of the auxiliary and 6 months of refinement bends: 13 mesial step-in, 21 step-in, 23 step-in, 24 step-out. Insertion of closed elastic chains between upper first molars and lower first molars

Treatments results

Fixed appliances were removed 33 months after the start of treatment (figures 17 and 18) and upper and lower essix retainers were delivered.
A solid class I canine and molar relationship was obtained on both sides, while the deep bite was resolved, the lower curve of Spee was flattened, and ideally minimal upper and lower curves of Wilson were attained. The resulting light contact was ideal. Despite the insertion of a sectional wire on buccal side (in addition to lingual appliance) and the use of posterior criss-
cross elastics, the torque on upper left first molar remained slightly negative. The patient was referred to a periodontist in order to examine the gingival recession after treatment.
Facial balance was achieved by means of the improved maxillomandibular projection and ideal anterior tooth exposure. A pleasant smile arc and harmonious profile were evident and the asymmetry was corrected (figure 19).
The final orthopantomography showed the root parallelism between the elements with no signs of bone and/or root resorption (figure 20).

Figure 17
End of treatment (33rd month) intraoral photographs

Figure 18
End of treatment (33rd month) models

Figure 19
End of treatment (33rd month) extraoral photographs

Figure 20
End of treatment (33rd month) orthopantomography

IGURE 21
End of treatment (33rd month) cephalometric analysis, tracing and values

Figure 22
General and local maxillary and mandibular superimpositions

Cephalometric analysis showed that the upper incisor torque had increased to 115° and the lower incisor inclination was normal (97°) (figure 21). The Ricketts E-line and Merrifield Z-line were congruent, substantiating the surgical treatment decision. Superimposition of pre- and post-treatment cephalometric tracings carried out according to the methodology described in the image captions, as developed by Professor Arne Björk [12,13]
shows that the correction was obtained by surgical movements, in particular by mandibular advancement. Upper incisors were slightly proclined, as planned in the set-up, despite the premolar extractions. Lower incisors were retroclined. This would allow us to achieve the correct torque for the mandibular advancement. A good light contact had been achieved. Upper molars were slightly intruded, lower molars slightly extruded due to curve of

Figure 23
Follow-up (one year) extraoral photographs

Figure 24
Follow-up intraoral (one year) photographs

Figure 25
Follow-up models (one year)

Spee flattening. No significant posterior maxillary impaction was evidenced (figure 22).
The patient reported a significant improvement in breathing and snoring at night.

Two month later, reconstructions on upper right central incisor and upper left lateral incisor were performed; upper and lower lingual retainers were bonded and new upper and lower essix were delivered.
Despite the extraction of upper third molars had been requested to the patient, it was necessary to monitor their position since the patient decided to delay it. The upper essix included the third molars in order to avoid their extrusion, waiting for the patient to have them extracted.
Treatment results remained stable at the one-year follow-up appointment (figures 23-25).

Discussion

A lingual straightwire system was introduced in 2001, with the aim of simplifying treatment mechanics, expediting arch coordination, and eliminating the complicated wire bends of the mushroom archwires [14].
Management of extraction cases became more straightforward with the ability to use sliding mechanics. Other advantages were reduced chairtime and increased patient comfort from the elimination of severe canine-premolar bends [15].

In this case, anterior torque was managed using overcorrections in the set-up and manual torque bends in the archwires.
Despite the upper central incisors had the same torque prescriptions and the space closure mechanics were symmetrical, they evidenced at the end of space closure a significantly different inclination. When a different torque expression in adjacent teeth occurs in lingual orthodontics, the incisal margins height discrepancy is more pronounced in respect of buccal orthodontics due to the longer distance of the tooth surface to the orthodontic wire [16].
Since the correction with a bend into the main wire was difficult, in consequence of the unfavorable moment ratio [8], with a short distance for the couple of force application [17], an auxiliary 0.016 spring was modeled and activated by ligating the wire as an auxiliary one in addition to the main 0.0175×0.0175 TMA.
The employment of an auxiliary spring with an auxiliary arch was necessary in order to obtain complete correction in place of torque insertion on the main wire, in consequence of the entity of torque correction and the interbracket distance.
A correct control of upper and lower incisor torque was crucial in this case in order to prepare the patient for maxillofacial surgery. The upper incisors which were normally-inclined (109°) at the start of treatment, needed to be maintained, despite the premolar extractions. This would allow us to achieve the correct torque for the mandibular advancement.
Upper incisors inclination obtained before surgery was 118° with a significant increase in respect of treatment start. In accordance with the surgeon, the torque difference between the upper central incisors was correct immediately after the surgical treatment, without interfering with the planned movements. The upper incisors finished with slightly higher inclination (115 ${ }^{\circ}$) compared with the start of treatment.
The lower incisors, which were proclined (101°) at the start of treatment, needed a reduction in torque to obtain the proper
inclination for the surgical movements. Before the surgery, their inclination turned out to be 94°, permitting the mandible to be advanced. At treatment end, the lower incisors were normalized to 97°.
At the end of treatment, the facial balance was improved, with better maxillary and mandibular projection and ideal anterior tooth inclination.

Conclusions

A dramatic facial change was obtained by lingual straight-wire treatment and orthognathic surgery in a full-step class II hyperdivergent case.
Torque control, necessary to achieve the mandibular advancement, was obtained by overcorrections in the set-up, space closure with light forces, stainless steel archwires, and compensation bends and curves. Despite the extractions, upper incisors torque turned out to be even increased, while lower incisors torque was normalized, permitting the mandibular advancement. The torque loss on upper left central incisor, that occurred despite the symmetrical bilateral space closure mechanics employed, was corrected with an auxiliary SS spring in a 0.016 SS wire, thus permitting also the leveling of the anterior incisal margins.
In consequence of the limited interbracket distance in lingual orthodontics, the employment of an auxiliary spring with an auxiliary arch is necessary in order to obtain complete correction in place of torque insertion on the main wire.

Acknowledgement: None.

Funding: None.
Contribution: Dr. Enrico Albertini (orthodontics) and Dr. Ugo Bacilero (maxillofacial surgery) treated the case. Dr. Paolo Albertini, Dr. Anna Colonna and Dr. Luca Lombardo contributed in the article preparation.

Disclosure of interest: The authors declare that they have no competing interest.

References

[1] Komaki H, Hamanaka R, Tominaga JY, et al. Biomechanical features of tooth movement from a lingual appliance in comparison with a labial appliance during space closure in sliding mechanics. Am J Orthod Dentofacial Orthop 2022;162(3):307-17.
[2] Deguchi T, Terao F, Aonuma T, et al. Outcome assessment of lingual and labial appliances compared with cephalometric analysis, peer assessment rating, and objective grading system in Angle Class II extraction cases. Angle Orthod 2015;85(3):400-7.
[3] Albertini E, Albertini P, Lombardo L, Siciliani G. Tip and torque control in complex extraction treatment with preadjusted lingual appliances. J Clin Orthod 2021;55(4):265-82.
[4] Inami T, Ito G, Miyazawa K, Tabuchi M, Goto S. Ribbon-wise customized lingual appliance and orthodontic anchor screw for the treatment of skeletal high-angle maxillary protrusion without bowing effect. Angle Orthod 2018;88(6):830-40.
[5] Sifakakis I, Pandis N, Makou M, Eliades T, Katsaros C, Bourauel C. A comparative assessment of torque generated by lingual and conventional brackets. Eur J Orthod 2013;35(3):375-80.
[6] Albertini P, Mazzanti V, Mollica F, Lombardo L, Siciliani G. Comparative analysis of passive play and torque expression in self-ligating and traditional and lingual brackets. J Orofac Orthop 2022;83(1):13-22.
[7] Scuzzo G, Takemoto KA. A new approach using Stb light lingual system \& lingual straight wire. 1st ed. Hanover Park, IL: Quintessence Publishing Co., Inc.; 2010 (264 pages).
[8] Isaacson RJ, Lindauer SJ, Rubenstein LK. Moments with the edgewise appliance: incisor torque control. Am J Orthod 1993;103 (5):428-38.
[9] Yeon BM, Lee NK, Park JH, Kim JM, Kim SH, Kook YA. Comparison of treatment effects after total mandibular arch distalization with miniscrews vs. ramal plates in patients with class III malocclusion. Am J Orthod Dentofacial Orthop 2022;161 (4):529-36.
[10] Kim YB, Bayome M, Park JH, et al. Displacement of mandibular dentition during total arch distalization according to locations and types of TSADs: 3D Finite element analysis. Orthod Craniofac Res 2019;22(1):46-52. doi: 10.1111/ocr. 12256 [Epub 2018 Dec 10. PMID: 30466181].
[11] Komori A, Takemoto K, Shimoda T, Miyashita W, Scuzzo G. Precise direct lingual bonding with the Kommon-Base. J Clin Orthod 2013;47:42-9.

12] Björk A, Skieller V. Growth of the maxilla in three dimensions as revealed radiographically by the implant method. Br J Orthod 1977;4:53-64.
[13] Björk A. Prediction of mandibular growth rotation. Am J Orthod 1969;55:585-99.
[14] Takemoto K, Scuzzo G. The straight-wire concept in lingual orthodontics. J Clin Orthod 2001;35:46-52.
[15] Scuzzo G, Takemoto K, Takemoto Y, Takemoto A, Lombardo L. A new lingual
straight-wire technique. J Clin Orthod 2010;44:114-23.
[16] Stamm T, Wiechmann D, Heinecken A, Ehmer U. Relation between second and third order problems in lingual orthodontic treatment. J Ling Orthod 2000;3:5-11.
[17] Moran KI. Relative wire stiffness due to lingual versus labial interbracket distance. Am J Orthod 1987;92(1):24-32.

