

Torque control with set-up and auxiliary spring in an adult severe class II case treated by lingual straight-wire appliance, premolar extractions and orthognathic surgery

Enrico Albertini, Paolo Albertini, Anna Colonna, Ugo Baciliero, Luca Lombardo

Available online:

Postgraduate school of Orthodontics, University of Ferrara, Ferrara, Italy

Correspondence: Enrico Albertini, Orthodontic Office, via Livatino 9, Reggio Emilia 42124, Italy. info@dralbertini.com

Keywords

Class II Mandible pathology Retrognathia High-angle Orthognathic surgery Lingual Torque

Summary

This case report describes a complex full-step class II high angle case in an adult patient treated with lingual straight-wire appliance, premolar extractions and orthognathic surgery. With the twofold aim of obtaining ideal occlusal relationship and aesthetic improvement, surgical treatment with appropriate biomechanical strategies, including extraction choice and torque control during space closure, are needed to achieve the planned results. This case report demonstrates the possibility of solving successfully severe sagittal, transverse and vertical discrepancies in an adult patient with surgical treatment by means of an invisible technique. This report also underlines the need for precise biomechanical control, including set-up overcorrections and an auxiliary spring to manage teeth inclination, in lingual orthodontics extraction cases.

Introduction

Torque control is one of the most difficult aspects of orthodontic extraction treatment, in particular when lingual appliances are employed.

A research of Komaki et al. comparing maxillary incisors' inclinations between lingual and labial appliances by finite element method concluded that loads of the same magnitude produced translation of the maxillary incisors in labial orthodontics but lingual crown tipping of the same tooth in lingual orthodontics [1]. To provide better torque control of the incisor or prevent a vertical bowing effect for the lingual appliance, the incorporation of extra torque into brackets of incisors and the use of power arm were recommended.

Deguchi et al. remarked that "exaggerated uprighting of the maxillary and mandibular incisors following treatment of class II extraction cases with lingual appliances indicates the need for increased lingual root torque to regain control of incisor movement during retraction" [2].

On the other side, a recent case series concluded that "control of anterior torque is a realistic goal of lingual orthodontic treatment, even in a complex extraction case, when overcorrections are included in the set-up prescription and space closure is managed with light forces, appropriate stainless steel archwires, and compensation bends and curves to limit bowing effects" [3].

Through the combined use of the ribbon-wise customized lingual appliance, palatal bar, and orthodontic anchor screw, vertical control and an excellent treatment result were achieved by Inami et al., without the vertical and horizontal bowing effects peculiar to conventional lingual treatment [4].

Some researchers compared the torque control achieved by different combinations of wires and brackets (conventional vs. selfligating) concluding that full-size wires and conventional brackets produced the best results [5,6].

In most cases, torque is properly controlled with the exception of few elements that show evident differences: this can happen since anterior retraction may produce a reactive tipping force due to differences in the biomechanical force directions [7]. In rare cases, despite a symmetric mechanics, one single tooth can evidence a higher torque loss.

In order to solve this shortcoming, this article describes how the employment of an auxiliary spring, in addition to set-up overcorrections, is successful to normalize single tooth torque, since orthodontic appliances are less efficient in torque movements, due to limited moment [8].

Diagnosis and aetiology

A 20-year-old male presented with the request to have his teeth aligned by means of an aesthetic appliance. From a frontal perspective, the face was well proportioned, with a mild form of hypertelorism, a mandibular symphysis deviation toward the right side and divergent mandibular angle (*figure 1*). The patient exhibited a convex profile, a prominent nose, a 90° nasolabial angle, a marked labio-mental sulcus, and a severely retrusive lower jaw. In medical history, a significant snoring at night was reported.

FIGURE 1 Initial frontal and lateral extraoral photographs

The midlines were not coincident, with the lower deviated toward the right side, while a crossbite involving the upper right first and second molars was present (*figures 2 and 3*); negative torque of the buccal and posterior segments was evident in both arches, along with an anterior deep bite and an accentuated lower curve of Spee. The patient had bilateral full-step class II

canine and molar relationships, a constricted upper arch, and an asymmetrical lower arch. The upper lateral incisors and the lower right lateral incisor were lingually displaced.

The periodontal biotype was thick. The panoramic radiograph showed the presence of all teeth, including the third molars, with the lower left impacted (*figure 4*).

FIGURE 2 Initial intraoral photographs

FIGURE 3 Initial models

FIGURE 4 Initial orthopantomography

Cephalometric values pointed out a skeletal class II relationship (ANB = 10°) with both the maxilla (SNA = 76°) and mandible (SNB = 66°) in retruded positions (*figure 5*). The skeletal pattern was hyperdivergent (SN/MP = 46°) with a counterclockwise-

oriented occlusal plane. The upper incisors were normally inclined (U1/PP = 109°) while the lower incisors were proclined (L1/MP = 101°).

AD o			ALCONT OF					
The second se								
Variable	Description Mc	Laughlin Clinical Norm	Value	Difference		Deviati	on	
Variable	Mc Description SNA Angle	Laughlin Clinical Norm 82,0±3,5°	Value 76,0°	Difference -2,5		Deviati	on	
Variable SNA SNB	Mc Description SNA Angle SNB Angle	Laughlin Clinical Norm 82,0±3,5° 80,0±3°	Value 76,0° 65,9°	Difference -2,5 -11,1		Deviati	on	
Variable SNA SNB ANB	Mc Description SNA Angle SNB Angle ANB Angle ANB Angle	Laughlin Clinical Norm 82,0±3,5° 80,0±3° 2,0±2,4°	Value 76,0° 65,9° 10,1°	Difference -2,5 -11,1 +5,7		Deviati	on	
Variable SNA SNB ANB A / NP	Mc Description SNA Angle SNB Angle ANB Angle Distance of A-point to Nasion Perpendic	Laughlin Clinical Norm 82,0±3,5° 80,0±3° 2,0±2,4° 0,0±3,1mm	Value 76,0° 65,9° 10,1° -0,7mm	Difference -2,5 -11,1 +5,7 0,0		Deviati	on	
/ariable SNA SNB ANB A / NP o / NP	Mc Description SNA Angle SNB Angle ANB Angle ANB Angle Distance of A-point to Nasion Perpendic Distance of Pogonion to Nasion Perpendic	Laughlin Clinical Norm 82,0±3,5° 80,0±3° 2,0±2,4° 0,0±3,1mm -4,0±5,3mm	Value 76,0° 65,9° 10,1° -0,7mm -20,8mm	Difference -2,5 -11,1 +5,7 0,0 -11,5	•	Deviati	on	
Variable INA INB INB INB INB INP INP INP INP INP INTS	Mc Description SNA Angle SNB Angle ANB Angle Distance of A-point to Nasion Perpendic Distance of A and B on Occl. Plane Distance of A and B on Occl. Plane	Laughlin Clinical Norm 82,0±3,5° 80,0±3,6° 2,0±2,4° 0,0±3,1mm -4,0±5,3mm 0,0±1mm	Value 76,0° 65,9° 10,1° -0,7mm -20,8mm 14,7mm	Difference -2,5 -11,1 +5,7 0,0 -11,5 +13,7	•	Deviati	on	
Yariable INA INB VINB V/ NP IO / NP VITS IN / MP	MC Description SNA Angle SNB Angle ANB Angle Distance of A-point to Nasion Perpend Distance of A and B on Occl. Plane Angle of S-N to Mand. Plane	Laughlin Clinical Norm 82,0±3,5° 80,0±3° 2,0±2,4° 0,0±3,1mm -4,0±5,3mm 0,0±1mm 32,0±5°	Value 76,0° 65,9° 10,1° -0,7mm -20,8mm 14,7mm 46,0°	Difference -2,5 -11,1 +5,7 0,0 -11,5 +13,7 +9,0	•	Deviati	on	
Yariable INA INB VNB V/ NP Vo / NP VITTS IN / MP H / MP	Mc Description SNA Angle SNA Angle ANB Angle ANB Angle Distance of A-point to Nasion Perpendic Distance of Pogonion to Nasion Perpendic Distance of Pagonion to Nasion Perpendic Angle of S-N to Mand, Plane Angle of FH to Mand, Plane	Laughlin Clinical Norm 82,0±3,5° 80,0±3° 2,0±2,4° 0,0±3,1mm -4,0±5,3mm 0,0±1mm 32,0±5° 26,0±5°	Value 76,0° 65,9° -0,7mm -20,8mm 14,7mm 46,0° 32,7°	Difference -2,5 -11,1 +5,7 0,0 -11,5 +13,7 +9,0 +1,7	•	Deviati	on	
Variable INA NB NB NB NB NB NB NB NB NB NB NB NB NB	Mc Description SNA Angle SNB Angle ANB Angle ANB Angle Distance of A-point to Nasion Perpendic Distance of Pogonion to Nasion Perpend Distance of A and B on Occl. Plane Angle of S-N to Mand. Plane Angle of FH to Mand. Plane Angle of FH to Mand. Plane Angle of FH to Mand. Plane	Laughlin Clinical Norm 82,0±3,5° 80,0±3° 2,0±2,4° 0,0±3,1mm -4,0±5,3mm 0,0±1mm 32,0±5° 26,0±5°	Value 76,0° 65,9° 10,1° -0,7mm -20,8mm 14,7mm 14,7mm 46,0° 32,7° 36,2°	Difference -2,5 -11,1 +5,7 0,0 -11,5 +13,7 +9,0 +11,7 +2,2	•	Deviati	on in in in in in in in in in in in in in	
Aariable INA INB VNB A / NP fo / NP VITTS IN / MP H / MP PP / MP PP / OP	Mc Description SNA Angle SNB Angle ANB Angle Destance of A-point to Nasion Perpendic Destance of Pogonion to Nasion Perpend Destance of A and B on Occ. Plane Angle of F-H to Mand. Plane Angle of F-H to Mand. Plane Angle between Palatal and Mand. Plane Angle between Palatal and Occ. Plane Angle between Palatal and Occ. Plane	Laughlin Clinical Norm 82,0±3,5° 80,0±3° 2,0±2,4° 0,0±3,1mm -4,0±5,3mm -4,0±5,3mm 32,0±5° 26,0±5° 28,0±6° 10,0±4°	Value 76,0° 65,9° 10,1° -0,7mm -20,8mm 14,7mm 46,0° 32,7° 36,2° 9,2°	Difference -2,5 -11,1 +5,7 0,0 -11,5 +13,7 +9,0 +1,7 +2,2 0,0	•	Deviati	on i	
Variable NNA SNB NNB \/ NP >o / INP WITS SN / MP +1 / MP >P/ MP >P/ MP >P/ MP +4 / 0P	Mc Description SNA Angle SNB Angle ANB Angle ANB Angle Distance of A-point to Nasion Perpendic Distance of Pogonion to Nasion Perpendic Distance of Pagonion to Nasion Perpendic Angle of S-N to Mand, Plane Angle of S-N to Mand, Plane Angle between Palatal and Occl. Plane Angle between Palatal and Occl. Plane Angle of Mand, to Occl. Plane Angle of Mand, to Occl. Plane	Laughlin Clinical Norm 82,043,5° 80,043° 2,042,4° 0,043,1mm 4,0.45,3mm 0,041,mm 32,045° 26,045° 26,045° 28,046° 10,044° 17,745°	Value 76,0° 65,9° 10,1° -0,7mm 14,7mm 14,7mm 46,0° 32,7° 36,2° 9,2° 27,0°	Difference -2,5 -11,1 +5,7 0,0 -11,5 +13,7 +9,0 +1,7 +2,2 0,0 0,0 +4,6		Deviati	on on	
Variable SNA SNB NNB A / NP 20 / NP WITS SN / MP H / MP P / MP P / MP P / OP 4P / OP J1 / A Po	Mc Description SNA Angle SNB Angle ANB Angle ANB Angle Distance of A-point to Nasion Perpendic Distance of Pogonion to Nasion Perpend Distance of A and B on Occl. Plane Angle of S-N to Mand. Plane Angle of FH to Mand. Plane Angle between Palatal and Mand. Plane Angle between Palatal and Occl. Plane Angle of Mand. to Occl. Plane Distance of L1 to A-Po	Laughlin Clinical Norm 82,043,5° 80,043° 2,042,4° 0,043° 1,042,3mm 0,041mm 32,045° 26,045° 26,045° 10,044° 17,445° 6,042,2mm	Value 76,0° 65,9° 10,1° -0,7mm -20,8mm 14,7mm 46,0° 32,7° 36,2° 9,2° 9,2° 27,0° 9,8mm	Difference -2,5 -11,1 +5,7 0,0 -11,5 +13,7 +9,0 +1,7 +2,2 0,0 +4,6 +1,6	•	Deviati	on on on on on on on on on on on on on o	
Variable SNA SNB NNB A / NP Yo / NP YITS SN / MP H / MP PP / MP PP / MP PP / OP HP / OP J1 / A Po J / A Po	Mc Description SNA Angle SNB Angle ANB Angle Distance of A-point to Nasion Perpendic Distance of A and B on Occl. Plane Angle of SH to Mand. Plane Angle of FH to Mand. Plane Angle between Platel and Mand. Plane Angle of Mand. to Occl. Plane Distance of L1 to A-Po Distance of L1 to A-Po	Laughlin Clinical Norm 82,0±3,5° 80,0±3° 2,0±2,4° 0,0±3,1mm -4,0±5,3mm 0,0±1mm 32,0±5° 26,0±5° 28,0±6° 10,0±4° 17,4±5° 6,0±2,2mm 2,0±2,3mm	Value 76,0° 65,9° 10,1° -0,7mm -20,8mm -20,8mm -20,8mm -20,8mm -36,0° 32,7° 36,2° 9,2° 27,0° 9,8mm 1,5mm	Difference -2,5 -11,1 +5,7 0,0 -11,5 +13,7 +9,0 +1,7 +2,2 0,0 +4,6 +1,6 0,0		Deviati		
Variable NNA SNB NMB A / NP >oo / NP WITS SN / MP H / MP PP / OP PP / OP JI / A Po JI / A Po	Mc Description SNA Angle SNB Angle ANB Angle ANB Angle Distance of A-point to Nasion Perpendic Distance of Pogonion to Nasion Perpendic Distance of Pogonion to Nasion Perpendic Angle of S-N to Mand, Plane Angle of S-N to Mand, Plane Angle between Palatal and Mand, Plane Angle between Palatal and Mand, Plane Angle between Palatal and Occl. Plane Angle between Palatal and Occl. Plane Distance of L1 to A-Po Distance of L1 to A-Po Distance of U1 to Palatal Plane Angle of Axis of U1 to Palatal Plane	Laughlin Clinical Norm 82,0±3,5° 80,0±3 2,0±2,4° 0,0±3,1m 4,0±5,3mm 0,0±1,mm 32,0±5° 26,0±5° 26,0±5° 28,0±6° 10,0±4° 17,4±5° 6,0±2,2mm 2,0±2,3mm 110,0±5°	Value 76,0° 65,9° 10,1° -0,7mm -20,8mm 14,7mm 46,0° 32,7° 36,2° 9,22° 27,0° 9,8mm 1,5mm 109,0°	Difference -2,5 -11,1 +5,7 0,0 -11,5 +13,7 +13,7 +2,2 0,0 0 +4,6 +1,6 0,0 0,0,0		Deviati		
Variable SNA SNB NNB A / NP Pool / NP WITS SN / MP H / MP Po / NP VP / MP Po / NP JI / A Po JI / A Po JI / PP J / MP	Mc Description SNA Angle SNB Angle ANB Angle ANB Angle Distance of A-point to Nasion Perpendic Distance of Pogonion to Nasion Perpend Distance of A and B on Occl. Plane Angle of S-N to Mand. Plane Angle of S-N to Mand. Plane Angle of the to Mand. Plane Angle of Huto Mand. Plane Angle of Huto Mand. Plane Angle of Mand. to Occl. Plane Distance of L1 to A-Po Distance of L1 to A-Po Angle of Axis of U1 to Plaital Plane Angle of Axis of U1 to Plane Plane Angle of Axis of U1 to Plaital Plane Angle O1 to XPD	Laughlin Clinical Norm 82,043,5° 80,043° 2,042,4° 0,043° 2,042,4° 0,043° 1,0,43° 26,045° 10,044° 10,044° 17,445° 6,042,2mm 2,042,3mm 110,045° 95,047°	Value 76,0* 65,9* 10,1* -0,7mm -20,8mm 14,7mm 46,0* 32,7* 36,2* 9,2* 9,2* 9,8mm 1,5mm 109,0* 100,8*	Difference -2,5 -11,1 +5,7 -0,0 -11,5 +13,7 +13,7 +13,7 +13,7 +12,2 -0,0 +14,7 +14,6 -0,0 -0,0 0,0,0		Deviati	on on	
Variable SNA SNB NNB A/NP No/NP N/NP N/NP P//NP P//NP P//OP 11/AP0 11/AP0 11/AP0 11/PP 11/OP 11/OP	Mc Description SNA Angle SNB Angle SNB Angle Distance of A-point to Nasion Perpendic Distance of A-point to Nasion Perpend Distance of A and B on Occl. Plane Angle of FH to Mand. Plane Angle of FH to Mand. Plane Angle between Platal and Mand. Plane Angle of Mand. to Occl. Plane Distance of L1 to A-Po Distance of L1 to A-Po Distance of L1 to A-Po Angle of Axis of U1 to Occl. Plane Angle of Axis of U1 to Datal Plane Angle of Axis of U1 to Occl. Plane Angle of Axis of U1 to Plane Angle of Axis of U1 to Plane Angle of Axis of U1 to Occl. Plane Angle of Axis of U1 to Occl. Plane	Laughlin Clinical Norm 82,0±3,5° 80,0±3° 2,0±2,4° 0,0±3,1mm -4,0±5,3mm 0,0±1mm 32,0±5° 26,0±5° 28,0±5° 28,0±5° 10,0±4° 117,4±5° 6,0±2,2mm 110,0±5° 95,0±7° 57,5±7°	Value 76,0° 65,9° 10,1° -0,7mm 46,0° 32,7° 36,2° 9,2° 27,0° 9,2° 27,0° 9,2° 27,0° 9,2° 27,0° 9,2° 27,0° 9,2° 27,0° 9,2° 27,0° 36,2° 36,2° 36,2° 36,2° 36,2° 36,2° 36,2° 36,2° 36,2° 37,0° 36,2° 37,0° 36,2° 36,2° 36,2° 36,2° 36,2° 36,2° 37,0° 36,2° 37,0° 36,2° 37,0° 36,2° 37,0° 36,2° 37,0° 36,2° 37,0° 36,2° 37,0° 36,2° 37,0°	Difference -2,5 -11,1 +5,7 -13,7 +3,7 +3,7 +3,7 +1,7 +1,7 +2,2 0,0 +1,4 6 -11,5 +1,6 0,0 0,0 0,0 0,0		Deviati	on O	

	Rot	h - Jarabak			
Variable	Description	Clinical Norm	Value	Difference	Deviation
Dental Analysis					
MeGoOcP	Angle of Mand. to Occl. Plane	14°	28°	+14	
п	Interincisal Angle	135°	114°	-21	
Max1-SN	Angle of Axis of 1u to Max. Base	102±2°	99°	-1	•
Mand1-MeGo	Angle of Axis of 11 to Mand. Base	90±3°	101°	+8	•
1up-NPog	Distance of Incisal Edge of 1u to N-Pog	5±2mm	16mm	+9	•
1lo-NPog	Distance of Incisal Edge of 11 to N-Pog	-22mm	9mm	+7	•
Ls-NsPog'	Upper Lip to Esthetic Line	-41mm	1mm	0	•
LI-NsPog'	Lower Lip to Esthetic Line	02mm	Smm	+3	
Skeletal Analysis					
NSar	Saddle Angle	123±5°	138°	+10	•
SarGo	Articular Angle	143±6°	137°	0	
arGoMe	Gonial Angle	130±7°	131°	0	
Sum	Sum Angle	396±5°	406°	+5	
N-S	Anterior Cranial Base Length	71±3mm	72mm	0	
S-ar	Lateral Cranial Base Length	32±3mm	36mm	+1	
NGoar	Upper Gonial Angle	5255°	53°	0	•
NGoMe	Lower Gonial Angle	7075°	78°	+3	
ar-Go	Ramus Length	44±5mm	41mm	0	
S-ar:ar-Go	Ratio of Lat. Cranial Base and Ramus Hei	6075%	88%	+13	
Go-Me	Mandibular Length	71±5mm	68mm	0	•
Go-Me:N-S	Ratio of Mand. and Cranial Base Length	100%	94%	-6	
SNA	SNA Angle	8084°	76°	-4	
SNB	SNB Angle	7882°	66°	-12	•
ANB	ANB Angle	04°	10°	+6	
SNGoMe	Angle of Anterior Cranial Base to Mand.	36°	46°	+10	
N-Go	Facial Depth		121mm		
S-Me	Facial Length on Y-Axis		120mm		
NSG	Y Axis to SN		80°		
S-Go	Posterior Facial Height		72mm		
N-Me	Anterior Facial Height		126mm		
S-Go:N-Me	Ratio of Posterior and Anterior Facial Hei	64±2°	57%	-5	•
SNPog Angle	Facial Plane		67°		
NAPog	Facial Convexity	175°	161°	-14	

Figure 5

Cephalometric analysis, tracing and values

Treatment objectives

The primary objectives were profile improvement by orthognathic surgery, dental class II correction, crossbite resolution and vertical control. Additional goals were crowding correction, reduction of black buccal corridors during smile, ideal overjet and overbite achievement and aesthetic dental exposition improvement at smile.

Treatment alternatives

Considering the patient's convex profile, the prominent nose and the bimaxillary retrusion, an orthodontic camouflage treatment with four premolar extractions would have adversely affected his facial balance.

Surgical orthodontic treatment including maxillo-mandibular advancement, posterior maxillary impaction, correction of asymmetry, transverse maxillary expansion and genioplasty was recommended as the only possible solution. The upper and lower second premolars would be extracted to prepare the patient for the surgical correction.

The maxillo-facial surgeon asked the lower third molars extraction. Surgical orthodontic treatment including maxillo-mandibular advancement, posterior maxillary impaction, correction of asymmetry, transverse maxillary expansion and genioplasty was recommended as the only possible solution. The upper and lower second premolars would be extracted to prepare the patient for the surgical correction.

Lower second premolars extractions were necessary in order to obtain a correct lower incisors inclination. Avoiding extractions in upper arch could have determined a molar class III relationship with an excessive number of upper teeth in comparison with the lower arch.

In lower arch, the possibility of decompensation by mandibular en-masse retraction, thus avoiding extractions, with either miniscrews or miniplates insertion and third molar extractions was considered [9,10]. However, the initial lower incisors proclination (requiring a significant correction, in order to allow the correct mandibular advancement) and the necessary increase in the duration of treatment lead to avoid this solution.

Treatment progress

Since the patient had asked for aesthetic treatment, a lingual appliance would be used. The lingual biomechanics would avoid lower incisor proclination during leveling, as a result of the intrusion force passing closer to the lower incisors' center of resistance [7].

Extraction tip and torque overcorrections were included in the manual set-up prescriptions for the preadjusted Ormco STb brackets (*figure 6*).

In consequence of the irregular incisal margins of upper right central incisor and the different height of lateral incisors, composite reconstructions on upper right central incisor and left lateral incisor were planned with the patient for treatment end.

FIGURE 6 Manual set-up

Indirect bonding was carried out with single jigs, according to the Komori KommonBase technique [11].

Lower arch was first performed with the insertion of a 0.013 Copper NiTi LSW small wire and an open-coil springs between the lower right lateral incisor and the lower right first premolar (*figure 7*a).

After a period of two months after the extraction of lower second premolars, the upper arch was bonded and the same size of Stb archwire was placed (*figure 7b*). Occlusal build-ups were added on the upper second molars to obtain a tripodic contact. A closed elastomeric chain was inserted between the upper left central and lateral incisor to facilitate their complete rotational correction. The open-coil springs between the lower right lateral incisor and first premolar was reactivated. Buccal tubes on lower first and second molars were bonded since lingual surface of lower second molars was too small for lingual brackets insertion. 0.019 \times 0.025 NiTi buccal sectionals were then inserted for the application of bilateral criss-cross 3/16 6oz Ormco Impala elastics.

The crossbite elastics were prescribed to the patient in order to help the correction of upper molars torque: the main entity of expansion correction was planned with surgical treatment.

Six months after the start of treatment, the upper wire was changed to a medium 0.018 \times 0.018 Copper NiTi for leveling

Figure 7

a: lower arch bonding. Insertion of 0.013 CuNiTi LSW Ormco Stb small. Insertion of open coil springs between the lower right lateral incisor and the lower right first premolar; b: upper arch bonding. Insertion of 0.013 CuNiTi LSW Ormco Stb small, build-ups on upper second molars and closed elastic chain between the upper left central and lateral incisors. Reactivation of open-coil springs between the lower right lateral incisor and first premolar. Bonding of buccal tubes on lower first and second molars. Insertion of 0.019 \times 0.025 NiTi buccal sectionals

Figure 8

a: at the 6th month, insertion of a medium 0.018×0.018 Copper NiTi in upper arch; insertion of a small 0.018×0.018 Copper NiTi for leveling and torque management was inserted in the lower arch; b: at the 9th month, insertion of a 0.018×0.018 posted stainless steel upper archwire, with the addition of root-palatal torque from upper right to upper left lateral incisor; super-Spee and transverse antibowing compensation curves. Insertion of a 0.018×0.018 stainless steel lower archwire with the addition of antiSpee curve. Insertion of closed elastomeric chains from upper right to upper left second molar and from lower right to lower left first molar

and torque management; a small 0.018×0.018 Copper NiTi for leveling and torque management was inserted in the lower arch (*figure 8*a).

Following a period of three months, after the extractions of upper second premolars, a 0.018 × 0.018 posted stainless steel upper archwire was inserted with the addition of root-palatal torque from upper right to upper left lateral incisor; super-Spee and transverse antibowing compensation curves were added. A 0.018 × 0.018 stainless steel lower archwire was inserted with the addition of antiSpee curve. Closed elastomeric chains were inserted from upper right to upper left second molar and from lower right to lower left first molar in order to begin spaces closure (*figure 8*b).

From the extraoral photographs, the pre-surgery profile worsening can be evidenced (*figure 9*).

After 23 months of treatment (two weeks before surgery), buccal buttons, brackets and tubes were bonded to the remaining teeth as attachments for postsurgical intermaxillary elastics (*figure 10*). The presurgical panoramic radiograph confirmed that root parallelism had been achieved (*figure 11*).

Cephalometric values showed an increase in upper incisor torque from 109° to 118° despite the extraction space closure (*figure 12*).

The lower incisor torque change was ideal (from 101° to 94°) for the sagittal mandibular advancement.

FIGURE 9 Pre-surgery frontal and lateral extraoral photographs

Maxillo-mandibular advancement was planned to improve the profile (with the addition of a genioplasty), posterior maxillary expansion to correct the posterior crossbite, posterior maxillary impaction to improve the hyperdivergent pattern (*figure 13*). The correction of the maxillomandibular asymmetry was in addition planned.

The maxillofacial surgery was performed after 24 months of orthodontic treatment. Three weeks later, bilateral class II 3/16 6oz Ormco Impala elastics were prescribed full-time in order to improve the intercuspation.

One month after the operation (at month 25), upper and lower 0.0175 \times 0.0175 TMA archwires were inserted in order to

Pre-surgery endobuccal views; upper and lower buccal buttons bonding

FIGURE 11 Pre-surgery orthopantomography

Mc Laughlin

Variable	Description	Clinical Norm	Value	Difference	Deviation			
SNA	SNA Angle	82,0±3,5°	76,3°	-2,2	0			
SNB	SNB Angle	80,0±3°	67,7*	-9,3				
ANB	ANB Angle	2,0±2,4°	8,6°	+4,2		•		
A / NP	Distance of A-point to Nasion Perpendicu	0,0±3,1mm	-0,5mm	0,0				
Po / NP	Distance of Pogonion to Nasion Perpend	-4,0±5,3mm	-15,3mm	-6,0	•			
WITS	Distance of A and B on Occl. Plane	0,0±1mm	12,0mm	+11,0				
SN / MP	Angle of S-N to Mand. Plane	32,0±5°	44,7°	+7,7		•		
FH / MP	Angle of FH to Mand. Plane	26,0±5°	31,4°	+0,4				
PP / MP	Angle between Palatal and Mand. Plane	28,0±6°	35,2°	+1,2				
PP / OP	Angle between Palatal and Occl. Plane	10,0±4°	8,3°	0,0		•		
MP / OP	Angle of Mand. to Occl. Plane	17,4+5*	26,9*	+4,5				
U1 / A Po	Distance of L1 to A-Po	6,0±2,2mm	7,7mm	0,0		•		
L1 / A Po	Distance of L1 to A-Po	2,0±2,3mm	-2,1mm	-1,8	•			
U1 / PP	Angle of Axis of U1 to Palatal Plane	110,0±5°	118,4°	+3,4				
L1 / MP	Angle of Axis of L1 to Mand. Plane	95,0±7°	93,9°	0,0	1111	•		
U1 / OP	Angle of Axis of U1 to Occl. Plane	57,5±7°	53,2°	0,0		•		
L1 / OP	Angle of Axis of L1 to Ocd. Plane	72,0±5°	59,2°	-7,8	•			

Roth - Jarabak						
Variable	Description	Clinical Norm	Value	Difference	Deviation	
Dental Analysis						
MeGoOcP	Angle of Mand. to Occl. Plane	14°	26°	+12		
П	Interincisal Angle	135°	112°	-23		
Max1-SN	Angle of Axis of 1u to Max. Base	102±2°	109°	+5	•	
Mand1-MeGo	Angle of Axis of 11 to Mand. Base	90±3°	94°	+1		
1up-NPog	Distance of Incisal Edge of 1u to N-Pog	5±2mm	13mm	+6		
1lo-NPog	Distance of Incisal Edge of 11 to N-Pog	-22mm	3mm	+1		
Ls-NsPog'	Upper Lip to Esthetic Line	-41mm	0mm	0	•	
LI-NsPog'	Lower Lip to Esthetic Line	02mm	4mm	+2		
Skeletal Analysis						
NSar	Saddle Angle	123±5°	136°	+8		
SarGo	Articular Angle	143±6°	138°	0	•	
arGoMe	Gonial Angle	130±7°	131°	0		
Sum	Sum Angle	396±5°	405°	+4		
N-S	Anterior Cranial Base Length	71±3mm	65mm	-3	•	
S-ar	Lateral Cranial Base Length	32±3mm	34mm	0		
NGoar	Upper Gonial Angle	5255°	52°	0		
NGoMe	Lower Gonial Angle	7075°	79°	+4		
ar-Go	Ramus Length	44±5mm	39mm	0		
S-ar:ar-Go	Ratio of Lat. Cranial Base and Ramus Heig	6075%	87%	+12		
Go-Me	Mandibular Length	71±5mm	63mm	-3		
Go-Me:N-S	Ratio of Mand. and Cranial Base Length	100%	97%	-3		
SNA	SNA Angle	\$084°	76°	-4	•	
SNB	SNB Angle	7882°	68°	-10	4	
ANB	ANB Angle	04°	9°	+5		
SNGoMe	Angle of Anterior Cranial Base to Mand.	36°	45°	+9		
N-Go	Facial Depth		112mm			
S-Me	Facial Length on Y-Axis		114mm			
NSG	Y Axis to SN		79°			
S-G0	Posterior Facial Height		69mm			
N-Me	Anterior Facial Height		117mm			
S-Go:N-Me	Ratio of Posterior and Anterior Facial Hei	64±2°	59%	-3		
SNPog Angle	Facial Plane		69°			
NAPog	Facial Convexity	175°	164°	-11		

FIGURE 12

Pre-surgery cephalometric analysis, tracing and values

FIGURE 13 Surgery sagittal, transverse and vertical movements planning

perform some finishing bends both in upper and lower arches. Some buccal buttons were removed while others were left on the upper and lower posterior teeth for use of nighttime bilateral class II elastics and sectional wires insertion (*figure 14*). An auxiliary 0.016 SS spring was modeled and inserted for increasing upper left central palatal root-torque in order to correct the height discrepancy of the central incisors marginal height (*figure 15*).

During the following six months, the auxiliary springs improved the upper left central incisor torque and the following finishing bends were performed: 12 step-out, 13 rotation bend, 21 stepout, 22 step-in and step-down, 23 step-in and tip bend, 24 stepout, 32–41–42 rotation bends, 34–44 tip bends. Anterior vertical intermaxillary elastics were added for nighttime in order to obtain an ideal overbite.

After 32 months from treatment start, 0.016 SS auxiliary wire was removed and the last refinement bends were performed to finish the occlusion: 22–23 step-in, 23 step-down, 25 rotation bend, 43 step-up (*figure 16*).

One-month post-surgery (at month 25) endobuccal views; upper and lower 0.0175×0.0175 TMA archwires insertion. 0.016 SS auxiliary torque spring insertion. Closed elastic chain insertion between upper first molars. Bilateral class II elastics prescribed for nighttime

FIGURE 15 0.016 SS auxiliary torque spring activation

After removal of the auxiliary and 6 months of refinement bends: 13 mesial step-in, 21 step-in, 23 step-in, 24 step-out. Insertion of closed elastic chains between upper first molars and lower first molars

Treatments results

Fixed appliances were removed 33 months after the start of treatment (*figures 17 and 18*) and upper and lower essix retainers were delivered.

A solid class I canine and molar relationship was obtained on both sides, while the deep bite was resolved, the lower curve of Spee was flattened, and ideally minimal upper and lower curves of Wilson were attained. The resulting light contact was ideal. Despite the insertion of a sectional wire on buccal side (in addition to lingual appliance) and the use of posterior crisscross elastics, the torque on upper left first molar remained slightly negative. The patient was referred to a periodontist in order to examine the gingival recession after treatment.

Facial balance was achieved by means of the improved maxillomandibular projection and ideal anterior tooth exposure. A pleasant smile arc and harmonious profile were evident and the asymmetry was corrected (*figure 19*).

The final orthopantomography showed the root parallelism between the elements with no signs of bone and/or root resorption (*figure 20*).

FIGURE 17 End of treatment (33rd month) intraoral photographs

FIGURE 18 End of treatment (33rd month) models

End of treatment (33rd month) extraoral photographs

FIGURE 20 End of treatment (33rd month) orthopantomography

			ALLO L			The second se
		s aushlin				
Variable	Description	c Laughlin Clinical Norm	Value	Difference	Deviation	
SNA	SNA Angle	82,0±3,5°	74,2*	-4,3		
SNB	SNB Angle	80,0±3°	70,3°	-6,7	•	
ANB	ANB Angle	2,0±2,4°	3,9°	0,0	•	
A / NP	Distance of A-point to Nasion Perpendic	0,0 ≜ 3,1mm	-1,9mm	0,0	•	
Po / NP	Distance of Pegonion to Nasion Perpend	-4,0±5,3mm	-8,0mm	0,0		
WITS	Distance of A and B on Occl. Plane	0,0±1mm	1,4mm	+0,4	•	
SN / MP	Angle of S-N to Mand, Plane	32,0±5°	45,0*	+8,0		
PP / MP	Ancie between Pabtal and Mand, Plane	28,0±5°	37.49	+3,4		
PP / OP	Angle between Palatal and Occi. Plane	10.0±4°	15.7*	+1.7		
MP / OP	Angle of Mand. to Occl. Plane	17,4±5°	21,7*	0,0	•	
U1 / A Po	Distance of L1 to A-Po	6,0±2,2mm	7,2mm	0,0		
L1 / A Po	Distance of L1 to A-Po	2,0±2,3mm	3,6mm	0,0	•	
U1/PP	Angle of Axis of U1 to Palatal Plane	110,0±5°	115,2°	+0,2		
L1 / MP	Angle of Axis of L1 to Mand. Plane	95,0±7°	97,3°	0,0		
U1 / OP	Angle of Axis of U1 to Uccl. Plane	57,5±/~	49, 1*	-1,4	•	
L1 / OP	Angle of Axis of L1 to Ocd. Plane	72,0±5°	61,0°	-6,0		
	Bot	h - Jarahak				
Variable	Description	Clinical Norm	Value	Difference	Deviation	
Dental Analysis						
MeGoOdP	Angle of Mand. to Occl. Plane	140	22°	+8		
II	Interincisal Angle	135°	110°	-25		
March Chi	LEUKIE OF AXIS OF THI TO NAY, Base					
Max1-SN Mapd1-MeGo	Apple of Axis of 11 to Mand, Base	20+22	108*	+4		
Max1-SN Mand1-MeGo Jup-NPco	Angle of Axis of 11 to Mand. Base Distance of Incisal Edge of 14 to N-Peg	90±3°	108* 97* 8mm	+4 +4 +1		
Max1-SN Mand1-MeGo Iup-NPog Ilo-NPog	Angle of Axis of 11 to Mand. Base Distance of Incisal Edge of 1u to N-Pog Distance of Incisal Edge of 11 to N-Pog	90±3° 5±2mm -22mm	108° 97° 8mm 5mm	++ ++ +1 +3		
Max1-SH Mand1-MeGo 1up-NPog 1b-NPog LS-NSPog'	Angle of Axis of 11 to Mand. Base Distance of Incisal Edge of 1u to N-Pog Distance of Incisal Edge of 11 to N-Pog Upper Lip to Esthetic Line	90±3° 90±3° 5±2mm -22mm -41mm	108* 97* 8mm 5mm -4mm	+4 +4 +1 +3 0		
Nax1-SN Mand1-MeGo 1up-NPog 1b-NPog LH:SPOg LH:SPOg	Angle of Axis of 11 to Mand. Base Distance of Incisal Edge of 14 to N-Pog Distance of Incisal Edge of 11 to N-Pog Upper Up to Esthetic Line Lower Lio to Esthetic Line	90±3° 5±2mm -22mm -41mm 02mm	108° 97° 8mm 5mm -4mm 0mm	+4 +4 +1 +3 0 0		
Max1-SN Mand1-MeGo Jup-NPog Lo-NPog Lo-NPog L-MsPog' LNNSPog' <u>Skoletal Archysis</u>	Angle of Axis of 11 to Mand. Base Distance of Incial Edge of 11 to M-Pog Distance of Incial Edge of 11 to M-Pog Upper Lip to Esthetic Line Lower Lib to Esthetic Line	90±3° 5±2mm -22mm -41mm 02mm	108* 97* 8mm Smm -4mm 0mm	+4 +4 +1 +3 0 0		
Nax1-SN Nard1-MeGo 10p-NPog 10-NPog 15-NPOg LS-NPOg LS-NPOg' Ckoletal Arabys NSar NSar	Angle of Axis of 11 to Mand. Base Distance of Incisi Edge of Lu to N Pog Distance of Incisi Edge of Lu to N-Pog Upper Up to Esthetic Line Lower Up to Esthetic Line Saddle Angle	10222" 90±3" 5+2mm -22mm -41mm 02mm	108* 97* 8mm 5mm -4mm 0mm 135*	+4 +4 +1 +3 0 0 0 +7		
Nax1-SN Mard1-MeGo 10p-NPog LI-NPog LI-NPOg LI-NPOg C <u>Skeletal Analysis</u> NSar SarGo SarGo	Angle of Axis of 11 to Mand. Base Distance of Incisal Edge of Li to N-Pog Distance of Incisal Edge of Li to N-Pog Upper Lip to Esthetic Line Lower Lib to Esthetic Line Sadele Angle Articular Angle	10222" 90±3" 5+2mm -22mm -41mm 02mm 123+5° 143±5°	108* 97* 8mm -4mm 0mm 135* 136*	+4 +4 +1 +3 0 0 0 +7 -1		
Nax:1-SN Nand1-McGo Jup-NPog Jup-NPog LS-HSPOg' LHNSPOg' Exkelstal./nahvsis NSar SarGo arGoMe Sum	Angle of Axis of 11 to Mand. Base Distance of Incisal Edge of 11 to N-Pog Distance of Incisal Edge of 11 to N-Pog Upper Up to Esthetic Line Lower Lib to Esthetic Line Saddle Angle Articular Angle Gonal Angle Sam Angle	10282* 9043* 542mm -22mm -4Imm 02mm 12345° 14346° 13087*	108° 97° 8mm 5mm -4mm 0mm 135° 136° 134°	+++ ++1 ++3 0 0 0 +7 +7 -1 0 0		
Max1-SN Mard1-MeGo Jup-NPog Ls-MpOg Ls-MpOg Ls-MpOg <u>Skoletal Archysis</u> NSar SSG arGoMe Sum N-S	Angle of Axis of 11 to Hand, Base Distance of Incikal Edge of Lu to N-Pog Distance of Incikal Edge of Li to N-Pog Upper Lip to Esthetic Line Lower Lib to Esthetic Line Saddle Angle Articular Angle Gonal Angle Sum Angle	10282* 9043* 542mm -2.2mm -41mm 0.2mm 12345* 14346* 13087* 39665* 714398	108° 97° 8mm 5mm -4mm 0mm 135° 136° 136° 134° 405° 70mm	+++ ++1 +11 +13 0 0 0 0 +7 -1 -1 0 ++7 +1 0 +1 +1 +7 -1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1		
Max1-SN Max1-SN Jup-NPog Jup-NPog LS-HSP0g' LSHSP0g' Skoletal Analysis NSar SarGo arGoMe Sum N-S S-ar	Angle of Axis of 11 to Mand. Base Distance of Incisal Edge of 1 ut to N-Pog Distance of Incisal Edge of 1 it to N-Pog Upper Lip to Esthetic Line Lower Lib to Esthetic Line Saddle Angle Articular Angle Sum Angle Sum Angle Lateral Canal Base Length Lateral Canal Base Length	10282* 9043* 542mm -2.2mm -4.1mm 0.2mm 12245* 14346* 13087* 39645* 7143mm 3243mm	108° 97° 8mm 5mm -4mm 0mm 135° 136° 134° 134° 405° 70mm 37mm	+++ ++1 +11 +13 0 0 0 +7 +7 -1 0 +1 0 +2		
Nax:1-SN Mand1-MeGo Jup-NPog LID-NPog LE-NIPOg' LANSPOg' LANSPOg' SarGo arGONe Sum N-Sa Sar NGar	Angle of Axis of 11 to Mand. Base Distance of Incisal Edge of 1 ut to NPog Distance of Incisal Edge of 1 ut on NPog Upper Lip to Esthetic Line Lower Lib to Esthetic Line Sadele Angle Articular Angle Sam Angle Sam Angle Sam Angle Anterior Cranial Base Length Lateral Chanial Base Length Upper Ginial Angle	10/282" 904.3" 5&2mm -22mm 41mm 02mm 12245° 14346° 13067° 39645° 71130mm 32&3mm 5255°	108* 97* 8mm 5mm -4mm 0mm 135* 136* 136* 134* 405* 70mm 37mm 55*	+++ ++1 ++3 0 0 0 0 0 0 +7 +7 +1 0 +1 0 +4 0 +4 0 +2 0		
Nax: 1-SN Nand: -MeGo Jup-NPog Jup-NPog Ls-HsPog' LsHsPog' LsHsPog' Saro Saro Sum N-S Sara NGow NGow	Angle of Axis of 11 to Hand. Base Distance of Incisal Edge of 11 to N-Pog Distance of Incisal Edge of 11 to N-Pog Upper Up to Esthetic Line Lower Lib to Esthetic Line Saddle Angle Articular Angle Gonal Angle Sum Angle Anterior Cranial Base Length Lateral Cranial Base Length Lateral Cranial Base Length Lateral Cranial Base Length Loper Gonial Angle	10/282" 90.3" 542mm -22mm -22mm 1.23459 1.23459 1.23459 1.33645° 7143mm 3243mm 5255° 7075°	108° 97° 8mm 5mm 4mm 135° 136° 135° 136° 134° 405° 70mm 37mm 55° 79°	+++ ++1 +11 +3 0 0 0 0 0 +7 -1 -1 0 +7 +7 +1 0 0 +4 0 +4		
Max1-SN Max1-MeGo Jup-NPog Jup-NPog LS-M8Pog' LS-M8Pog' Skolstal Archvis NSar SarGo arGoMe Sum N-S S-ar NGoMe ar-Ge	Angle of Axis of 11 to Mand, Base Distance of Incisil Edge of Lu to N Pog Distance of Incisil Edge of Li to N-Pog Upper Lip to Esthetic Line Saddle Angle Articular Angle Gonal Angle Sum Angle Anterior Cranial Base Length Literal Canal Base Length Lipper Gonial Angle Ramus Length	10282* 9043* 5&2mm -22mm -41mm 0.2mm 12245* 143469* 133647* 33645* 7143mm 3243mm 3243mm 5255* 7075*	108° 97° 8mm 5mm 44mm 0mm 135° 136° 136° 136° 134° 405° 70mm 37mm 55° 79° 39mm	+++ ++1 ++3 0 0 ++7 1 1 1 1 1 1 1 1 		
Nax:1-SN Mand1-MeGo Jup-NPog Lib-NPog Lib-NPog Lib-NPog Lib-NPog SarSo SarGo SarGo NSar SarGo Noar NGoar NGo4 NGo4 Sar2s-Go	Angle of Axis of 11 to Mand. Base Distance of Incisal Edge of 1 ut to N.Pog Distance of Incisal Edge of 1 ut to N.Pog Upper Lip to Esthetic Line Lower Lib to Esthetic Line Saddle Angle Articular Angle Sum Angle Sum Angle Sum Angle Lateral Craniel Base Length Lipper Gonial Angle Lower Gonal Angle Rubus Constal Rase Length Lower Gonal Angle Rubus Lingth Ratio of Lat. Craniel Base and Ramus Hes	10/282" 9043" 5&2mm -22mm -41mm 02mm 12245° 14346° 13047* 39645° 7113mm 3243mm 3243mm 5255° 7075° 414.5mm 6075%	108° 97° 8mm -4mm 0mm 135° 136° 134° 405° 70mm 37mm 55° 79° 39mm 96%	+4 +4 +11 +11 +3 0 0 +7 -1 -1 0 +44 +0 0 +44 +0 0 +41 +21		
Naci.15N Nandi.16G0 Jup.NPog Jup.NPog LS-NPog' LS-NPog' LS-NPog' LS-NPog SarGo arGoMe Sum NI-S Sara NGoM NGoMe arGe Sara-Go Go-Ne Go-Ne	Angle of Axis of 11 to Hand. Base Distance of Incisal Edge of Lit to NPog Distance of Incisal Edge of Lit to NPog Upper Lip to Esthetic Line Lower Lib to Esthetic Line Sadele Angle Articular Angle Sum Angle Sum Angle Sum Angle Sum Angle Sum Angle Lateral Cranial Base Length Lateral Cranial Base Length Lateral Cranial Base Length Lateral Cranial Base Length Luper Gonial Angle Ramus Length Ratis of Lit. Cranial Base and Ramus Heig Mandbubr Length	10/282" 904.3" 542mm -22mm -41mm 02mm 12245° 14346° 13087° 39565° 7143mm 52.35° 7075° 4445mm 6075% 7145mm 6075%	108* 97** 8mm -4mm 00mm 125* 136* 134* 405* 134* 405* 70mm 55* 79* 39mm 55* 79*	+++ +++ ++1 ++1 ++7 -+7 -+7 -+7 -+7 -+7 -+7 -+7 -+7 -+7		
Max:1-SN Nand:1-MeGo Jup-NPog Jup-NPog Ls-HsPog' Ls-HsPog' LsHsPog' Sararo Sararo Sararo NSar Sararo NGoMe Sararo NGoMe Sarar-Go Ga-Me Ge-Me:N-S Su	Angle of Axis of 11 to Hand, Base Distance of Incisil Edge of Lu to N-Pog Distance of Incisil Edge of Li to N-Pog Upper Lip to Esthetic Line Lower Lo to Esthetic Line Saddle Angle Articular Angle Gonal Angle Sum Angle Anterior Craniel Base Length Lateral Craniel Base Length Lateral Craniel Base Length Lateral Craniel Base Length Lateral Magle Ramus Length Ratio of Lat. Craniel Base and Ramus Hei Mandehulz Length	10/282" 90.3" 542mm -2.2mm -4.1mm 02mm 122459 143469 133087" 39645° 7143mm 3243mm 32.35° 7075° 4445mm 6075% 71.45mm 100% 0.0.45%	108* 97-* 98mm 98mm 98mm 98mm 135* 136* 136* 136* 134* 405* 405* 70mm 37mm 37mm 37mm 39mm 96% 75mm	+++ +++ ++1 ++3 		
Max1-SN Max1-SN March 1-MeGo Jub-NPog Jub-NPog Jub-NPog Jub-NPog Skaleson	Angle of Axis of 11 to Nand. Base Distance of Incisal Edge of 1 ut to N Pog Distance of Incisal Edge of 1 ut to N Pog Upper Lip to Esthetic Line Saddle Angle Articular Angle Gonal Angle Sum Angle Sum Angle Laveral Cranial Base Length Lateral Cranial Base Length Lower Gonial Angle Ratis of Lat. Cranial Base and Ramus Heig Mandbular Length Ratis of Lat. Cranial Base Length SNA Organ.	10/282" 904.3" 54.2mm -22mm -41mm 02mm 12345° 14346° 13047* 39645° 7143mm 324.3mm 324.3mm 324.3mm 6075% 7145mm 100% 8084% 7025% 7025% 21	108* 97* 8mm 5mm 0mm 135* 136* 136* 136* 70mm 55* 70mm 55* 79* 37mm 96% 79* 39mm 96% 74*	+++ +++ ++1 ++3 		
Nax: 1-SN Nand:-MeGo Jup-NPog Jup-NPog LHNPog' LHNPog' LHNPog' Saras SarGo arGoMe Sum NI-S S-ara NGoar NGoAr Ge-Me:N-S SArA SNA SNB ANA	Angle of Axis of 11 to Mand. Base Distance of Incisal Edge of 1 ut to N-Pog Upper Lip to Esthetic Line Lower Lib to Esthetic Line Saddle Angle Articultr Angle Sam Angle Sam Angle Sam Angle Anterio: Cranial Base Length Lateral Cranial Base Length Lateral Cranial Base Length Lupper Gonial Angle Ratio of Lat. Cranial Base and Ramus Heig Mandbub/ Langth Ratio of Mand. and Cranial Base Length SNB Angle SNB Angle	10/282" 904.3" 5&2mm -22mm -41mm 02mm 12245° 14346° 13067° 39645° 71.43mm 32&376 7075° 444.5mm 6075% 71.45mm 100% 8034° 7.8.82° 06	108* 97-* 8mm 94mm 0mm 135* 138* 138* 138* 70mm 37mm 55* 79* 39mm 96% 79* 79* 39mm 96% 74* 79*	+++ +++ ++1 ++3 0 0 0 +7 +7 1 0 0 ++1 +4 +0 0 ++2 0 0 ++2 0 0 ++2 0 0 ++2 		
Nax: 1-SN Nand: 1-MeGo Jup-NPog Jup-NPog Ls-HsPog' LsHsPog' LsHsPog Saran NSar Sara NGoMe Sara-Go Sara-Go Sara-Go Sara-Go Sara-Go Sara-Go Sara-Go ShiB ANB Siligome	Angle of Axis of 11 to Hand, Base Distance of Incisil Edge of Lu to N-Pog Distance of Incisil Edge of Li to N-Pog Upper Lip to Esthetic Line Lower Lo to Esthetic Line Saddle Angle Articular Angle Gonal Angle Sum Angle Anterior Cranel Base Length Lateral Mangle Bamus Length Ratio of Lat. Cranel Base Length Ratio de Lat. Cranel Base Length Ratio de Mand, and Cranel Base Length SNB Angle ANB Angle ANB Angle ANB Angle ANB Angle	10/282" 904.3" 54.2mm -22mm -22mm -41mm 02mm 122459 143469 13087" 396459 714.3mm 52.359 70759 444.5mm 607596 714.5mm 100% 800649 78929 044 308.47 044 308.47 308.45 308.47 308.48 308.4	108* 97- 98mm 97- 97- 96m 96m 125* 136* 134* 405* 70mm 37mm 37mm 35* 70* 79* 39mm 96% 75* 79* 39mm 96% 45* 70* 70* 74* 74*	+++ +++ ++1 ++3 0 0 0 +7 +7 -1 -1 0 +++ 4 0 +++ 1 0 0 ++2 0 0 ++2 0 0 ++2 0 0 ++1 +1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1		
Max1-SN Max1-SN Mand1-MeGo Jup-NPog Jub-NPog Jub-NPog LS-MSPOg' <u>Skelstal Analysis</u> NSar SarGo arGoMe Sum N-S S-ar NGoMe ar-Go Go-Me:N-S SN4 SN4 SN6 ANB SN60Me	Angle of Axis of 11 to Mand, Base Distance of Incisal Edge of 1 ut to N Pog Distance of Incisal Edge of 1 ut to N Pog Upper Up to Esthetic Line Lower Ub to Esthetic Line Saddle Angle Articular Angle Sam Angle Sam Angle Sam Angle Distanci Cranial Base Length Liberal Cranial Base Length Lower Gonial Angle Ratis of Lat. Cranial Base and Ramus Heig Brandbubr Length Ratis of Lat. Cranial Base Length SNB Angle SNB Angle ANB Angle Angle of Anterior Cranial Base to Mand. 4 Fead Depth	10/282* 904.3* 58-2mm -22mm -41mm 02mm 12345* 14346* 13067* 39645* 7143mm 32435* 7075* 444.5mm 6075% 7145mm 100% 8084* 7882* 04* 35*	108* 97* 8mm 5mm 4mm 0mm 135* 136* 134* 405* 70mm 55* 70mm 55* 70mm 55* 70mm 55* 70mm 55* 70mm 55* 70mm 55* 70mm 96% 4* 74* 74* 74* 74* 74* 107% 117%	+++ +++ ++1 ++3 0 0 0 		
Nax: 1-SN Nand:-MeGo Jup-NPog Jup-NPog LHNPog' LHNPog' LHNPog' LHNPog' Saracon Saracon Saracon Now Now Now Noor NooMe Sarac-Go Ga-Me:N-S Sin Sin <t< td=""><td>Angle of Axis of 11 to Mand. Base Distance of Incisal Edge of 1 ut to N-Pog Upper Lip to Esthetic Line Lower Lib to Esthetic Line Saddle Angle Articular Angle Somal Angle Sum Angle Sum Angle Lower Gonal Rage Length Liber Gonal Rage Ratio of Mand. Base Length Liber Gonal Rage Ratio of Ind. Angle Ratio of Lat. Cranial Base and Ramus Hee Mandbub Langth Ratio of Lat. Cranial Base Length SNB Angle SNB Angle Angle of Anterior Cranial Base to Mand. § Facial Length on Y-Axis</td><td>10/282" 904.3" 5&2mm -22mm -41mm 02mm 122459 143469 1306.7" 396459 711.3mm 328.3mm 324.3mm 52559 7075% 714.5mm 6075% 714.5mm 100% 8064* 76929 04*</td><td>108* 97* 8mm 97* 135* 136* 135* 136* 134* 405* 70mm 35* 70mm 35* 70mm 35* 70m 35* 70m 35* 70m 35* 70* 70* 70* 70* 70* 70* 70* 70* 70* 70</td><td>+++ +++ ++1 ++3 0 0 0 +7 </td><td></td><td></td></t<>	Angle of Axis of 11 to Mand. Base Distance of Incisal Edge of 1 ut to N-Pog Upper Lip to Esthetic Line Lower Lib to Esthetic Line Saddle Angle Articular Angle Somal Angle Sum Angle Sum Angle Lower Gonal Rage Length Liber Gonal Rage Ratio of Mand. Base Length Liber Gonal Rage Ratio of Ind. Angle Ratio of Lat. Cranial Base and Ramus Hee Mandbub Langth Ratio of Lat. Cranial Base Length SNB Angle SNB Angle Angle of Anterior Cranial Base to Mand. § Facial Length on Y-Axis	10/282" 904.3" 5&2mm -22mm -41mm 02mm 122459 143469 1306.7" 396459 711.3mm 328.3mm 324.3mm 52559 7075% 714.5mm 6075% 714.5mm 100% 8064* 76929 04*	108* 97* 8mm 97* 135* 136* 135* 136* 134* 405* 70mm 35* 70mm 35* 70mm 35* 70m 35* 70m 35* 70m 35* 70* 70* 70* 70* 70* 70* 70* 70* 70* 70	+++ +++ ++1 ++3 0 0 0 +7 		
Naci.15N Nandi.16Go Jup.14Peg Jup.14Peg Jub.14Peg Jub.14Peg Sarao Kolatal.Analysis StarGo arGoMe Sum Hr.5 Sara NGoar NGoMe Sara Go.Ne Ge.Ne Ge.Ne Sindo	Angle of Axis of 11 to Hand, Base Distance of Incikal Edge of Lu to N-Pog Distance of Incikal Edge of Li to N-Pog Upper Lip to Esthetic Line Lower Lib to Esthetic Line Saddle Angle Articular Angle Gonal Angle Sum Angle Sum Angle Anterior Cranial Base Length Lateral Cranial Base Length Ramus Length Ratio of Lat. Cranial Base Length Ratio of Mand, and Canial Base Length SNB Angle ANB Angle ANB Angle ANB Angle ANB Angle Angle of Anteror Cranial Base to Mand, § Facial Depth Facial Length on Y-Axis Y Axer to SN	10/282* 904.3* 58-2mm -22mm -41mm 02mm 12345* 14346* 13047* 393645* 71430m 52.35* 7075* 444.5mm 605* 71450m 100% 8064* 7882* 04* 35*	108* 97- 97- 97- 97- 97- 96- 136* 136* 136* 136* 134* 405* 70mm 37mm 37mm 37mm 96% 79* 39mm 96% 79* 39mm 96% 74* 34* 79* 10% 74* 30% 74* 30% 74* 30% 74* 30% 74* 30% 75% 75% 75% 75% 75% 75% 75% 75% 75% 75	+++ +++ ++1 ++1 ++3 		
Max:1-SN Nand:1-MeGo Jup-NPog Jup-NPog Jup-NPog Sarbog' Lis-HisPog' LishBog' LishBog' Sarbog Sarbog Ardigen Sarbog Ardigen Sum N-S Sara NGow NGow NGow Ge-Me:N-S Sita SNW NHB Sita Sita Sita Neg Sita Si	Angle of Axis of 11 to Mand, Base Distance of Incisal Edge of Lu to N-Pog Distance of Incisal Edge of Lu to N-Pog Upper Up to Esthetic Line Saddle Angle Articular Angle Gonal Angle Sam Angle Anterior Cranial Base Length Lucer I can all Base Length Lucer Gonal Angle Ramus Length Ratio of Lat. Cranial Base and Ramus Hei Bandbub Length Batio of Mand, and Canial Base Length SNB Angle NBB Angle Angle of Anterior Cranial Base to Mand. 5 Read Depth Read Depth Read Depth Read Depth Read Depth Read Neght	10/282" 9043" 582mm -22mm -41mm 02mm 12345° 14346° 130647* 339645° 71.43mm 32435° 7075° 4445mm 60759° 71.45mm 100% 8084° 78.82° 04* 35°	108* 97* 8mm 4mm 135* 136* 136* 136* 136* 136* 136* 70mm 55* 70mm 55* 70mm 55* 70mm 55* 70* 96% 74* 74* 70* 4* 4* 4* 4* 4* 70* 71mm	+++ +++ ++1 ++1 ++3 0 0 +7 +- +- + + + + + + + + + + + + + +		
Nax: 1-SN Mand:-MeGo Jup-NPog Lib-NPog Lib-NPog Lib-NPog Lib-NPog Saran Sarao Sarao NGar NGoar NGoar NGoMe ar-Go Sara-Co Go-Me:NS SHA SNA SNA SNA Sia Sia Sara-Co Go-Me:NS SitA SNA	Angle of Axis of 11 to Mand, Base Distance of Incisal Edge of 1 ut to N Pog Distance of Incisal Edge of 1 ut to N Pog Upper Lip to Esthetic Line Saddle Angle Articular Angle Gonal Angle Sum Angle Sum Angle Sum Angle Laver I on al Angle Laver Gonal Angle Laver Gonal Angle Laver Gonal Angle Ratio of Lat. Cranial Base Length Laver Gonal Angle Ratio of Lat. Cranial Base and Ramus Hej Mandbubar Length Ratio of Lat. Cranial Base Length SNB Angle SNB Angle ANB Angle SNB Angle Angle of Anterior Cranial Base to Mand, s Facial Depth Facial Length on Y-Axie Y Axis to SN Posterior Facial Height Artice of Facial Height	10/282" 9043" 582mm -22mm -41mm 02mm 122459 143469 13047* 396459 7113mm 3243mm 52.559 70759 71.43mm 6075% 7143mm 6075% 7145mm 100% 8004* 7892* 04*	108* 97* 8mm 3mm 0mm 135* 136* 136* 136* 70mm 55* 70mm 55* 70mm 55* 70mm 55* 70mm 55* 70mm 55* 70mm 55* 70mm 55* 70mm 30mm 96% 75* 70mm 30mm 40% 75* 70mm 30mm 30mm 55* 70mm 30mm 55* 70mm 30mm 55* 70mm 30mm 55* 70mm 30mm 55* 70mm 30mm 55* 70mm 30mm 55* 70mm 30mm 55* 70mm 30mm 55* 70mm 30mm 55* 70mm 30mm 55* 70mm 30mm 30mm 30mm 30mm 30mm 30mm 30mm	+++ +++ ++1 ++1 ++3 0 0 0 + +7 		
Nami - SN Nandi - MeGo Jup - NPog Jup - NPog Jub - NPog Ls-Huspog' Ls-Huspog' Ls-Huspog' Sardon Go-Me Go-Me: N-S SNA SNG ANB SNGONE NSG SMa NSG SGo SMa NSGO SMa NSG SGo SMa NSG SGo: M-Me	Angle of Axis of 11 to Hand, Base Distance of Incikal Edge of Lu to N-Pog Distance of Incikal Edge of Li to N-Pog Upper Lip to Esthetic Line Lower Lib to Esthetic Line Saddle Angle Articular Angle Gonal Angle Sum Angle Anterior Cranial Base Length Lateral Cranial Base Length Ratis of Mand, and Canial Base Length SNB Angle ANB Angle ANB Angle ANB Angle ANB Angle Angle of Anteror Cranial Base to Mand, 5 Facial Depth Facial Length on Y-Axis Y Axer to SN Posterior Facial Height	10/282" 904.3" 58-2mm -22mm -41mm 02mm 12245° 14346° 13067° 39645° 71434mm 32437mm 32437mm 32437mm 6075% 71459mm 100% 8034° 7882° 04° 35° 6442°	108* 97* 8mm 9mm 1125* 1136* 1136* 1136* 1136* 70mm 37mm 55* 70* 39mm 96% 70* 70* 39mm 96% 70* 70* 39mm 96% 70* 70* 10* 70* 40* 70* 40* 70* 118mm 96% 70* 70* 118mm 96% 70* 70* 70* 70* 70* 70* 70* 70* 70* 70*	+++ +++ ++1 +		
Nami J-SN Nand J-MeGo Jup-NPog Jup-NPog Ls-HsPog' LsHsPog' LsHsPog Saran NSar Saran Model arGoMe Sara NGole ar-Go Sara-Go Go-Me Go-Me ShiB ANB SiGoMe NSG ShiB NiGo ShiGo SiGome SiGome NiGo ShiB ANB SiGong SiGong SiGong SiGong SiGong SiGong SiGong SiGong Sigo	Angle of Axis of 11 to Mand, Base Distance of Incisil Edge of Lu to N-Pog Distance of Incisil Edge of Lu to N-Pog Upper Up to Esthetic Line Lower Up to Esthetic Line Saddle Angle Articular Angle Gonal Angle Sum Angle Sum Angle Anterior Cranial Base Length Literal Canal Base Length Mandéulz Langth Ratio of Hand, and Canal Base Length SNA Angle Angle of Mand, and Canal Base Length SNB Ange Angle of Anterior Canal Base to Mand. 5 Facial Depth Facial Depth Facial Length on Y-Axis Y Axes to SN Posterior Facial Height Anticelor Facial Height Angle of Anterior and Anterior Facial Heeght Facial Depth	10282* 9043* 582mm -22mm -41mm 02mm 12245* 14346* 13087* 39645* 7143mm 3243mm 3243mm 3243mm 5255* 7075* 4445mm 6075% 7075* 4445mm 6075% 78.82* 04* 35*	108* 97* 8mm 4mm 135* 136* 136* 134* 405* 70mm 55* 70mm 55* 70mm 55* 70mm 55* 70mm 55* 70* 70* 30mm 96% 74* 70* 4* 4* 70* 107% 107% 107% 107% 71mm 127mm 227mm	+++ +++ ++1 ++1 ++3 0 0 ++7 +-1 +-1 1 1 1 		

End of treatment (33rd month) cephalometric analysis, tracing and values

FIGURE 22 General and local maxillary and mandibular superimpositions

Cephalometric analysis showed that the upper incisor torque had increased to 115° and the lower incisor inclination was normal (97°) (*figure 21*). The Ricketts E-line and Merrifield Z-line were congruent, substantiating the surgical treatment decision. Superimposition of pre- and post-treatment cephalometric tracings carried out according to the methodology described in the image captions, as developed by Professor Arne Björk [12,13]

shows that the correction was obtained by surgical movements, in particular by mandibular advancement. Upper incisors were slightly proclined, as planned in the set-up, despite the premolar extractions. Lower incisors were retroclined. This would allow us to achieve the correct torque for the mandibular advancement. A good light contact had been achieved. Upper molars were slightly intruded, lower molars slightly extruded due to curve of

FIGURE 24 Follow-up intraoral (one year) photographs

FIGURE 25 Follow-up models (one year)

Spee flattening. No significant posterior maxillary impaction was evidenced (*figure 22*).

The patient reported a significant improvement in breathing and snoring at night.

Two month later, reconstructions on upper right central incisor and upper left lateral incisor were performed; upper and lower lingual retainers were bonded and new upper and lower essix were delivered.

Despite the extraction of upper third molars had been requested to the patient, it was necessary to monitor their position since the patient decided to delay it. The upper essix included the third molars in order to avoid their extrusion, waiting for the patient to have them extracted.

Treatment results remained stable at the one-year follow-up appointment (*figures 23–25*).

Discussion

A lingual straightwire system was introduced in 2001, with the aim of simplifying treatment mechanics, expediting arch coordination, and eliminating the complicated wire bends of the mushroom archwires [14].

Management of extraction cases became more straightforward with the ability to use sliding mechanics. Other advantages were reduced chairtime and increased patient comfort from the elimination of severe canine-premolar bends [15].

In this case, anterior torque was managed using overcorrections in the set-up and manual torque bends in the archwires.

Despite the upper central incisors had the same torque prescriptions and the space closure mechanics were symmetrical, they evidenced at the end of space closure a significantly different inclination. When a different torque expression in adjacent teeth occurs in lingual orthodontics, the incisal margins height discrepancy is more pronounced in respect of buccal orthodontics due to the longer distance of the tooth surface to the orthodontic wire [16].

Since the correction with a bend into the main wire was difficult, in consequence of the unfavorable moment ratio [8], with a short distance for the couple of force application [17], an auxiliary 0.016 spring was modeled and activated by ligating the wire as an auxiliary one in addition to the main 0.0175×0.0175 TMA.

The employment of an auxiliary spring with an auxiliary arch was necessary in order to obtain complete correction in place of torque insertion on the main wire, in consequence of the entity of torque correction and the interbracket distance.

A correct control of upper and lower incisor torque was crucial in this case in order to prepare the patient for maxillofacial surgery. The upper incisors which were normally-inclined (109°) at the start of treatment, needed to be maintained, despite the premolar extractions. This would allow us to achieve the correct torque for the mandibular advancement.

Upper incisors inclination obtained before surgery was 118° with a significant increase in respect of treatment start. In accordance with the surgeon, the torque difference between the upper central incisors was correct immediately after the surgical treatment, without interfering with the planned movements. The upper incisors finished with slightly higher inclination (115°) compared with the start of treatment.

The lower incisors, which were proclined (101°) at the start of treatment, needed a reduction in torque to obtain the proper

inclination for the surgical movements. Before the surgery, their inclination turned out to be 94°, permitting the mandible to be advanced. At treatment end, the lower incisors were normalized to 97° .

At the end of treatment, the facial balance was improved, with better maxillary and mandibular projection and ideal anterior tooth inclination.

Conclusions

A dramatic facial change was obtained by lingual straight-wire treatment and orthognathic surgery in a full-step class II hyperdivergent case.

Torque control, necessary to achieve the mandibular advancement, was obtained by overcorrections in the set-up, space closure with light forces, stainless steel archwires, and compensation bends and curves. Despite the extractions, upper incisors torque turned out to be even increased, while lower incisors torque was normalized, permitting the mandibular advancement. The torque loss on upper left central incisor, that occurred despite the symmetrical bilateral space closure mechanics employed, was corrected with an auxiliary SS spring in a 0.016 SS wire, thus permitting also the leveling of the anterior incisal margins. In consequence of the limited interbracket distance in lingual orthodontics, the employment of an auxiliary spring with an auxiliary arch is necessary in order to obtain complete correction in place of torque insertion on the main wire.

Acknowledgement: None.

Funding: None.

Contribution: Dr. Enrico Albertini (orthodontics) and Dr. Ugo Bacilero (maxillofacial surgery) treated the case. Dr. Paolo Albertini, Dr. Anna Colonna and Dr. Luca Lombardo contributed in the article preparation.

Disclosure of interest: The authors declare that they have no competing interest.

References

- [1] Komaki H, Hamanaka R, Tominaga JY, et al. Biomechanical features of tooth movement from a lingual appliance in comparison with a labial appliance during space closure in sliding mechanics. Am J Orthod Dentofacial Orthop 2022;162(3):307–17.
- [2] Deguchi T, Terao F, Aonuma T, et al. Outcome assessment of lingual and labial appliances compared with cephalometric analysis, peer assessment rating, and objective grading system in Angle Class II extraction cases. Angle Orthod 2015;85(3):400–7.
- [3] Albertini E, Albertini P, Lombardo L, Siciliani G. Tip and torque control in complex extraction treatment with preadjusted lingual appliances. J Clin Orthod 2021;55(4):265–82.
- [4] Inami T, Ito G, Miyazawa K, Tabuchi M, Goto S. Ribbon-wise customized lingual appliance and orthodontic anchor screw for the treatment of skeletal high-angle maxillary protrusion without bowing effect. Angle Orthod 2018;88(6):830–40.
- [5] Sifakakis I, Pandis N, Makou M, Eliades T, Katsaros C, Bourauel C. A comparative assessment of torque generated by lingual and conventional brackets. Eur J Orthod 2013;35(3):375–80.
- [6] Albertini P, Mazzanti V, Mollica F, Lombardo L, Siciliani G. Comparative analysis of passive play and torque expression in self-ligating and traditional and lingual brackets. J Orofac Orthop 2022;83(1):13–22.
- [7] Scuzzo G, Takemoto KA. A new approach using Stb light lingual system & lingual straight wire. 1st ed. Hanover Park, IL: Quintessence Publishing Co., Inc.; 2010 (264 pages).
- [8] Isaacson RJ, Lindauer SJ, Rubenstein LK. Moments with the edgewise appliance: incisor torque control. Am J Orthod 1993;103 (5):428-38.
- [9] Yeon BM, Lee NK, Park JH, Kim JM, Kim SH, Kook YA. Comparison of treatment effects after total mandibular arch distalization with miniscrews vs. ramal plates in patients with class III malocclusion. Am J Orthod Dentofacial Orthop 2022;161 (4):529–36.

- [10] Kim YB, Bayome M, Park JH, et al. Displacement of mandibular dentition during total arch distalization according to locations and types of TSADs: 3D Finite element analysis. Orthod Craniofac Res 2019;22(1):46–52. doi: 10.1111/ocr.12256 [Epub 2018 Dec 10. PMID: 30466181].
- [11] Komori A, Takemoto K, Shimoda T, Miyashita W, Scuzzo G. Precise direct lingual bonding with the Kommon-Base. J Clin Orthod 2013;47:42–9.
- [12] Björk A, Skieller V. Growth of the maxilla in three dimensions as revealed radiographically by the implant method. Br J Orthod 1977;4:53–64.
- [13] Björk A. Prediction of mandibular growth rotation. Am J Orthod 1969;55:585–99.
- [14] Takemoto K, Scuzzo G. The straight-wire concept in lingual orthodontics. J Clin Orthod 2001;35:46–52.
- [15] Scuzzo G, Takemoto K, Takemoto Y, Takemoto A, Lombardo L. A new lingual

straight-wire technique. J Clin Orthod 2010;44:114–23.

- [16] Stamm T, Wiechmann D, Heinecken A, Ehmer U. Relation between second and third order problems in lingual orthodontic treatment. J Ling Orthod 2000;3:5–11.
- [17] Moran KI. Relative wire stiffness due to lingual versus labial interbracket distance. Am J Orthod 1987;92(1):24–32.